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ABSTRACT 18 

In present study, cacao oil-based organo-hydrogels (OHCOs) are synthesized to detect 19 

carcinoma antigen 125 (CA-125) in serum medium with electrochemical methods such as 20 

cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential 21 

pulse voltammetry (DPV). OHCOs are prepared by the free radical polymerization reaction 22 

with agar, glycerol, and distinct ratios of cacao oil with glutaraldehyde (GA) crosslinker or 23 

methylene bisacrylamide (MBA) crosslinker. OHCOs are characterized via Fourier Transform 24 

Infrared Spectroscopy (FT-IR), in different solvent environments and pHs. Electrochemical 25 

measurements are performed on OHCOs at the presence and absence of CA-125 antigen in 26 

serum medium. For the electrochemical sensor, two distinct linear ranges are determined as 27 

0.00083-41.5 U/mL and 83.0-2075 U/mL. LOD and LOQ values are found as 0.34 U/mL and 28 
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1.01 U/mL, respectively. These results clearly show that OHCOs is a promising sensor 29 

material for the determination of CA-125 in human serum, sensitively.  30 

Keywords: ovarian cancer, CA-125, cacao oil, electrochemical, sensor 31 

1. Introduction 32 

Ovarian cancer is one of the most common gynecological cancers with the  highest mortality 33 

rate. The reason of the high mortality for ovarian cancer is due to the fact that  asymptomatic 34 

and secret growth of the tumor leads th emergence of symptoms in the late stages [1-4]. Ovarian 35 

cancer can be treated with chemotherapy or surgery in the early stages without metastasis [5-36 

7]. 37 

Markers are indicators that can be used to evaluate biological processes at biological states and 38 

drug responses [8, 9]. Biological markers such as DNA, antibody, enzymes, RNA, peptide, or 39 

receptors structures found in secretions such as serum, urine, blood, saliva, and nipple 40 

discharge could help in early screening, monitoring, and diagnosis of cancers [10-15].  41 

CA-125 is the only marker approved as a tumor marker to monitor stages and response to 42 

treatment for ovarian cancer. CA-125 has a high molecular weight protein in the MUCIN 16 43 

family, and it is found on the cell surface of ovarian tumors. Levels in blood samples and 44 

production of CA-125 are known to be associated with the growth of cancer cells [16, 17]. In 45 

healthy individuals, CA-125 levels are at a threshold of less than 35 U/mL, and higher ratios 46 

than from this value of CA-125 are usually associated with ovarian cancer. Apart from that, the 47 

level of CA-125 can increase in cancer types such as lung, gastrointestinal, breast, and 48 

endometrial cancers [18, 19].   49 

In literature, in order to detect CA-125 more sensitively, studies have been made on different 50 

types of sensors such as chemiluminescence [20, 21], fluorescence [22, 23], electrochemical 51 

sensor [24, 25], colorimetric [26, 27], resonance [28, 29], and photoluminescence [30]. 52 
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Electrochemical sensors are of great importance for screening and following cancers due to 53 

having very sensitive detection limits to monitor the level of markers in patients and normal 54 

serums. In addition, these sensors are rapid, cheap, simple, and reliable devices [31]. 55 

PAA/GSPE [32], SPE/ Au–AgNPs [33], benzothiophene derivates [34-37], Ab1/Au-rGO/GCE 56 

[38], Cat@AMQDs-GCE [39], HRP [40], Ppy nanowire [41], MOF-808/CNT/GCE [42], and 57 

Co(bpy)3
3+/MWNTs–Nafion/GC [43] materials were studied to measure CA-125 level 58 

sensitively with electrochemical methods. In addition, Rebelo et al. reported that they 59 

developed molecular imprinting polymers (MIP) to detect CA-125. They indicated that this 60 

sensor has a good selectivity in 0.01-500 U/mL concentration range and with a 0.01 U/mL 61 

detection limit [44]. In another study, Torati et al. developed a gold nanostructures modified 62 

electrode (GNs) for the detection of CA-125 and they found that this GNs electrode has a linear 63 

range of 10-100 U/mL and a low detection limit of 5.5 U/mL [45]. Moreover, Ravalli et al. 64 

reported that they prepared a screen-printed graphite electrode modified with gold 65 

nanoparticles for the detection of CA-125, which varies in a linear concentration range of 0-66 

100 U/mL and allows for a clear identification of CA-125 with a detection limit of 6.7 U/mL 67 

[46]. Apart from these studies, the LOD and concentration ranges of  electrochemical sensors 68 

compiled from the literature were given in Table 1. 69 

Table 1. Detection limits and concentration ranges of different electrochemical sensors 70 

reported from the literature 71 

Tumor 

Marker 
Sensor Detection Limit 

Concentration 

range 
Ref. 

CA-125 
AuNP-PB-PtNPPANI 

Hydrogel 
4.4 mU/mL 0.01-5000 U/mL [47] 

CA-125 Au–Thi-CPE 1.8 U/mL 10-30 U/mL [48] 

CA-125 
CA125/colloidal 

AuNPs/CA-GCE 
1.73 U/mL 0-30 U/mL [49] 

CA-125 Ag NPs-GQDs/Ab/BSA/Ag 0.01 U/mL 0.01-400 U/mL [50] 

CA-125 thionine/CA125/CNF-GCE 1.8 U/mL 2-75 U/mL [51] 

CA-125 FA@H-PANI@CS-HCl 0.25 pg/mL 0.001-25 ng/mL [52] 

CA-125 
Ab2–Ag–Ab1/Au-

VBG/BDD/Ta 
0.09 mU/mL 0.5-100 U/mL [53] 
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CA-125 
BSA/Ab/Au NPs/Cys 

A/ERGO-P(DA)-GCE 
0.1 U/mL 0.1-400 U/mL [54] 

CA-125 OHCO-2 
0.34 U/mL (LOD) 

1.01 U/mL (LOQ) 

0.00083-41.5 and 

83.0-2075 U/mL 

This 

Study 

 72 

Herein, OHCOs were synthesized by free radical polymerization reaction to detect CA-125 73 

sensitively in serum medium. Agar, glycerol, and MBA or GA crosslinkers were used in the 74 

preparation of OHCOs. Cacao oil used in the preparation of OHCOs can include structures 75 

molecules in ratios 25.6% palmitic acid, 34.6% stearic acid, 34.7% oleic acid, 3.3% linoleic 76 

acid, and 1.8% others [55-59]. 77 

2. Materials and Methods  78 

2.1. Materials 79 

Chemicals such as agar, dopamine, methylene bisacrylamide (MBA), glutaraldehyde (GA), 80 

glycerol, D-glucose, calcium chloride (CaCl2), uric acid, potassium chloride (KCl), magnesium 81 

dichloride (MgCl2), ethanol, acetone, ascorbic acid, sodium hydrogen phosphate (Na2HPO4), 82 

potassium ferrocyanide  (K4[Fe(CN)6].3H2O), potassium hydrogen phosphate (K2HPO4), and 83 

sodium chloride (NaCl) were used for the electrochemical sensor by supplying from Sigma-84 

Aldrich. 0.9% isotonic sodium chloride solution was purchased from the pharmacy. DI water 85 

was obtained from the Milli-Q water purification system. All glassy materials was rinsed with 86 

DI water, ethanol, and acetone. 87 

2.2. Characterization and Synthesis of organo-hydrogels 88 

Cacao oil-based organo-hydrogels (OHCOs) were synthesized as described by Alpaslan et al. 89 

[60]. Briefly,  2 mL of agar solution and 0.04 mL of glycerol were added to the 20 mL flask 90 

and of different amounts (0.1, 0.2 and 0.3 mL) Cacao oil was added to the reactions mixture. 91 

Or-hydrogel mixture was stirred at 800 rpm for 15 min until the formation of a clear 92 
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homogeneous solution emulsion and then MBA (0.1%) or glutaraldehyde reagent was added 93 

as a crosslinker and further homogenized. In 100 µL DI water, the polymerization process was 94 

started by adding the initiator solution ammonium persulfate (APS). The solution was pipetted 95 

into a 6 mm diameter pipe and allowed to polymerize for 4 hours before being cut into 6 mm 96 

long cylinders. The oven at 40 0C until a constant weight was achieved and stored at 4 0C for 97 

further uses. 98 

Table 2. Contents of cacao oil-based or-hydrogels (OHCOs)  99 

OHCO No 
Amount of Cacao 

Oil (mL) 
Crosslinker Mixture 

1 0.1 Methylene bisacrylamide (MBA) 

Agar (2 mL) + 

Glycerol (0.04 mL 

2 0.2 Methylene bisacrylamide (MBA) 

3 0.3 Methylene bisacrylamide (MBA) 

4 0.1 Glutaraldehyde (GA) 

5 0.2 Glutaraldehyde (GA) 

6 0.3 Glutaraldehyde (GA) 

 100 

The swelling analysis methods described in the literature were used for analyses. Swelling tests 101 

were performed at room temperature of 25 0C [61, 62]. The Fourier Transform Infrared 102 

Spectroscopy were measured with a Fourier Transform Infrared  Spectrometer at a frequency 103 

range of 4000-650 cm-1.  104 

2.3. Fabrication of the electrochemical sensor 105 

OHCOs were synthesized, cut into suitable sizes to prepare electrodes, and then CA-125 was 106 

incubated on prepared electrodes at certain times in varying concentrations. Finally, OHCOs 107 

and OHCO+CA-125 electrodes by using a thin copper wire were prepared as working 108 

electrodes. Electrochemical measurements were obtained with CV, EIS, and DPV by a 109 

potentiostat device with a triple electrode system. Pt wire and Ag/AgCl (3 M KCl) in the triple 110 

electrode system were used as counter electrode and reference electrode, respectively. All 111 

preparation steps of the electrochemical sensor are given in Figure 1. 112 
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Figure 1: Synthesis of OHCOs and preparation steps of the electrochemical sensor. 113 

2.4. Electrochemical Measurements 114 

Electrochemical measurements were performed with CV, EIS, and DPV methods on OHCO 115 

based electrodes. Firstly, CV measurements were obtained at room temperature at 50 mV/s 116 

scan rate in 0.1 M PBS (included 5 mM Fe(CN)6
3-/4-) on OHCOs and OHCOs+CA-125 117 

prepared by incubating 1000 ng/mL CA-125 for 30 min.. OHCO-2+CA-125, containing 0.2 118 

mL cacao oil, exhibited the highest current value. The effect of experimental parameters such 119 

as concentration of CA-125 and incubation time on OHCO-2+CA-125 electrode. The effect of 120 

CA-125 concentration (1-50000 ng/mL CA-125) was examined with CV at room temperature 121 

and 50 mV/s scan rate in 0.1 M PBS (included 5 mM Fe(CN)6
3-/4-) over OHCO-2+CA-125. 122 
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Results revealed that 1000 ng/mL CA-125 concentration incubated electrode had the best 123 

current value. The incubation time that the best important parameter for a sensor was 124 

investigated via CV at room temperature and 50 mV/s scan rate in 0.1 M PBS (included 5 mM 125 

Fe(CN)6
3-/4-) over OHCO-2+CA-125s, which prepared at varying incubation times among 10-126 

110 min. with 1000 ng/mL CA-125 amount. The best incubation time was determined as 30 127 

min.. Further, the effect of the scan rate on the electrooxidation process was researched with 128 

CV at varying scan rates as 5-1000 mV/s at room temperature in 0.1 M PBS (included 5 mM 129 

Fe(CN)6
3-/4-) on OHCO-2+CA-125 electrode prepared by incubating of 1000 ng/mL CA-125. 130 

In addition, the electrooxidation process was investigated by receiving measurements with EIS 131 

at room temperature and at varying potentials -0.6 V-0.6 V in 0.1 M PBS (included 5 mM 132 

Fe(CN)6
3-/4-) on OHCO-2+CA-125 prepared by incubating for 30 min. of 1000 ng/mL CA-125.  133 

The sensitivity of the sensor was determined by taking measurements with DPV at room 134 

temperature in 0.1 M PBS (included 5 mM Fe(CN)6
3-/4-) on OHCO-2+CA-125 prepared by 135 

incubating for 30 min. at varying amounts among 0.001-50000 ng/mL CA-125. The sensitivity 136 

of the sensor was approximated from the calibration plot slope of DPV curves. 137 

Interference effects on the electrooxidation process on OHCO-2 in serum medium were 138 

investigated with CV and EIS at room temperature and 50 mV/s scan rate on OHCO-2 and 139 

OHCO-2+CA-125 prepared by incubating for 30 min. of 1000 ng/mL CA-125 in 0.1 M 140 

PBS+4.7 mM Glucose, 0.1 M PBS+0.1 mM Dopamine, 0.1 M PBS+0.1 mM Ascorbic acid, 141 

and 0.1 M PBS+2.5 mM Uric acid.   142 

Finally, the effects of distinct salt on the electrooxidation process on  OHCO-2 electrode in 143 

serum medium were examined by taking measurements with CV and EIS at room temperature 144 

and 50 mV/s scan rate on OHCO-2 and OHCO-2+CA-125 prepared with 1000 ng/mL CA-125 145 

for 30 min., in 0.9% isotonic NaCl solution and artificial serum solution (included 5 mM CaCl2, 146 

4.7 mM D-glucose, 1.6 mM MgCl2, 4.5 mM KCl, and 2.5 mM uric acid). 147 
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3. Results and Discussion 148 

OHCOs were successfully synthesized according to the results of the swelling tests (Fig. S1) 149 

and FT-IR (Fig. S2). OHCOs were used to detect CA-125 more sensitively with 150 

electrochemical methods such as CV, EIS, and DPV in serum medium without anti CA-125. 151 

Firstly, CV measurements were taken at room temperature and 50 mV/s scan rate in 0.1 M PBS 152 

(included 5 mM Fe(CN)6
3-/4-) on OHCOs in the absence of CA-125. Following this, similar 153 

measurements were taken in the presence of CA125. CV results were shown in Figure 2. 154 

Electrooxidation peaks were not observed in measurements received on OHCOs without CA-155 

125, but these peaks were clearly observed at 0.00.7 V potentials at measurements obtained 156 

on OHCO+CA-125s prepared by incubating 1000 ng/mL CA-125 amount for 30 min. (Fig. 2a-157 

b). Moreover, as can be clearly seen in Fig. 2c, the electrooxidation peaks of CA-125 were 158 

clearly observed in the measurements taken in the presence and absence of CA-125. In the 159 

measurements obtained on OHCO-1, OHCO-2, OHCO-3 synthesized with MBA crosslinker, 160 

the electrooxidation peaks came at lower potentials compared to OHCO-4, OHCO-5, OHCO-161 

6 synthesized with GA crosslinker (Fig. 2b and Table 2). OHCO-2+CA-125 synthesized with 162 

0.2 mL cacao oil and MBA crosslinker exhibited the highest performance with forward peak 163 

1.114 mA/cm2 (1114.0 /cm2) at 0.35 V and backward peak 1.125 mA/cm2 (1125.0 /cm2) 164 

at -0.39 V. In addition, OHCO-1+CA-125 synthesized with 0.1 mL cacao oil and MBA 165 

crosslinker had the lowest performance with forward peak 0.4277 mA/cm2 (427.7 /cm2) at 166 

0.29 V and backward peak 0.3766 mA/cm2 (376.6 /cm2) at -0.33 V. Similar behavior for the 167 

CV measurements in the presence of CA-125 was observed for the OHCO-4, OHCO-5, 168 

OHCO-6 electrodes synthesized with GA crosslinker (Fig. 2b). These results obtained by CV 169 

technique on OHCOs without anti-CA125 are promising for sensitively detecting CA-125 in 170 

serum medium. 171 
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Figure 2. CV results that received at room temperature and 50 mV/s scan rate in 0.1 M PBS 172 

(included 5 mM Fe(CN)6
3-/4-) on a) OHCOs electrodes, b) OHCOs+CA-125 electrodes, and c) 173 

compare of OHCO-2 and OHCO-2+CA-125 electrodes. 174 

CV measurements were performed at room temperature and 50 mV/s scan rate in 0.1 M PBS 175 

(included 5 mM Fe(CN)6
3-/4-) to examine the effect of CA-125 concentration on the 176 

electrooxidation process between OHCO-2 and CA-125. Results are presented in Figure 3a. 177 

Different OHCO-2+CA-125 electrodes were prepared at varying concentrations between 1-178 

50000 ng/mL by incubating CA-125 for 30 min. at room temperature for these measurements. 179 

One could note that a gradual increase in current density was observed in measurements 180 

obtained on OHCO-2+CA-125 between 1-1000 ng/mL and a gradual decrease in current 181 

density was observed in measurements taken on OHCO-2+CA-125 between 1000-50000 182 

ng/mL. From these results, one could understand that the electrochemical sensor had the 183 
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highest current density at 1000 ng/mL CA-125 concentration. Following this, CV 184 

measurements were taken to investigate the effect of CA 125 incubation time (10-110 min. on 185 

OHCO-2+CA-125 at room temperature and 50 mV/s scan rate in 0.1 M PBS over OHCO-186 

2+CA-125 (Fig. 3b). Results revealed that 30 min was the best incubation time of CA-125 on 187 

OHCO-2. 188 

  

Figure 3. CV results that received at room temperature and 50 mV/s scan rate in 0.1 M PBS 189 

(included 5 mM Fe(CN)6
3-/4-); a) on OHCO-2+CA-125s prepared with varying rates at 1-50000 190 

ng/mL CA-125 concentrations by incubating 30 min.; and b) on OHCO-2+CA-125s prepared 191 

with 1000 ng/mL by incubating 10-110 min.. 192 

The scan rate effect on electrooxidation process on  OHCO-2+CA-125 prepared at optimum 193 

conditions (1000 ng/mL CA-125 amount and 30 min incubation time) was investigated by 194 

taking measurements at varying the scan rates among 5-1000 mV/s at room temperature. 195 

Results of these measurements were demonstrated in Fig. 4. It was observed that the current 196 

density increased with increasing scan rate (5-1000 mV/s), indicating that a diffusion-197 

controlled electrochemical reaction took place on OHCO-2. 198 
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 199 

Figure 4. CV results taken at varying scan rates at room temperature in 0.1 M PBS (included 200 

5 mM Fe(CN)6
3-/4-) on OHCO-2+CA-125s prepared with 1000 ng/mL CA-125 amount by 201 

incubating 30 min. 202 

 203 

EIS method was employed to investigate the electrooxidation process on the prepared 204 

electrodes. Nyquist plots from the EIS data consist of a semicircular field expressing linear 205 

divisions with the charge transfer resistance (Rct) denoting the diffusion process. When the 206 

radius of these semicircles is small, Rct is small, and when their radius is also large, Rct is large 207 

[63-66]. To understand of electrochemical process between CA-125 and OHCO-2, EIS 208 

measuremenst were performed at varying potentials at room temperature in 0.1 PBS (included 209 

5 mM Fe(CN)6
3-/4-) on OHCO-2+CA-125 electrode prepared by incubating 1000 ng/mL CA-210 

125 for 30 min. Results and the equivalent circuit model were presented in Fig. 5. The 211 

measurements taken between -0.6 V (220.7 ohm) and 0.6 V (836.2 ohm) had different semi-212 

circles at each potential. The electrooxidation of CA-125 on OHCO-2 was slow when the 213 

semicircle diameter of the Nyquist plots was large, but the electrooxidation of CA-125 on 214 

OHCO-2 was fast when the semicircle diameter of the Nyquist plots was small. According to 215 

Fig. 4b, CA-125 electrooxidation reaction on OHCO-2 was slow at -0.6 V (220.7 ohm), -0.4 V 216 
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(310.3 ohm), 0.5 V (346.8 ohm), and 0.6 V (836.2 ohm), but CA-125 electrooxidation was fast 217 

at -0.2 V (232.1 ohm), 0.0 V (114.8 ohm), 0.1 V (107.5 ohm), 0.2 V (364.1 ohm), and 0.3 V 218 

(129.3 ohm). The rapid kinetics of CA-125 electrooxidation on OHCO-2 was at the lowest 219 

possible level at 0.1 V (107.5 ohm). These results are also compatible with results obtained 220 

from DPV and CV. 221 

 

 

Figure 5. a) EIS results that taken at varying potentials between -0.6 V to 0.6 V at room 222 

temperature in 0.1 M PBS (included 5 mM Fe(CN)6
3-/4-) on OHCO-2+CA-125s prepared with 223 

1000 ng/mL CA-125 for 30 min. and b) equivalent circuit model obtained for OHCO+CA-125 224 

electrodes. 225 

The lowest detection limit (LOD) and limit of quantification (LOQ) values were calculated 226 

with OHCO-2 and OHCO-2+CA-125 electrodes prepared with distinct CA-125 concentrations 227 

at 0.001-5000 ng/mL for 30 min incubation time. Initially, 10 blank DPV measurements were 228 

performed on OHCO-2s without CA-125 and then DPV measurements were taken on OHCO-229 

2s at the presence of CA-125. In order to obtain sensitivity value, the maximum current values 230 

versus concentration values were plotted and presented in Fig. 6. One could observe that there 231 

were two distinct linear ranges as 0.001-50 ng/mL (0.00083-41.5 U/mL) and 100-2500 ng/mL 232 

(83.0-2075 U/mL). LOD and LOQ values for the sensor were found as 0.00041 ng/mL (0.34 233 

b 
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U/mL) and 0.00122 ng/mL (1.01 U/mL), respectively. LOD value found for the sensor was 234 

lowest than reported in the literature (Table 1). 235 

 

b 
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 c 

 

d 

 

Figure 6. DPV results in 0.1 M PBS (included 5 mM Fe(CN)6
3-/4-) on OHCO-2+CA-125 236 

produced with varying concentrations between a) 0.001, 0.1, 0.5, 10, 30, 50, 100, 300,500, 700, 237 

1000, 1500, 2000, 2500, 3000, 4000, 5000 ng/mL, b) maximum current versus log CA-125 238 

concentration, c) maximum current against 0.001-50 ng/mL CA-125 concentration values, and 239 

d) maximum currents vs. 100-2500 ng/mL CA-125 concentration values. 240 
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Interference measurements were taken in the presence of uric acid, ascorbic acid, dopamine, 241 

and glucose on OHCO-2 + CA-125 electrodes by CV and EIS. CV and EIS results of these 242 

measurements are presented in Fig.7 and Fig.8, respectively. These measurements were 243 

performed on OHCO-2 and OHCO-2+CA-125 prepared by incubating 1000 ng/mL CA-125 244 

for 30 min at room temperature. In CV measurements received over OHCO-2s without CA-245 

125, any electrooxidation peaks were not observed for uric acid, ascorbic acid, dopamine, and 246 

glucose (Fig. 7). However, CA125 electrooxidation peaks were clearly observed on OHCO-247 

2+CA-125s electrodes. These peaks were almost the same as the peak obtained over OHCO-248 

2+CA-125s without interfering molecules. These results show that the interfering molecules in 249 

the serum samples have no effect on the CA-125 electrooxidation reaction on OHCO-2. One 250 

could note that OHCO-2 was only sensitive to CA-125 antigen (Fig. 7). Likewise, EIS 251 

measurements on  OHCO-2 at 0.1 potential in the absence of CA-125 showed that the charge 252 

transfer resistance (Rct) was very large compared to the measurements obtained in the presence 253 

of CA-125. It can clearly see that the load transfer resistances (Rct) of results obtained on 254 

OHCO-2+CA-125s in the presence and absence of structural molecules are close to each other 255 

as CV results (Fig. 8). 256 
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Figure 7. CV results of interference measurements that received at room temperature in a) Uric 257 

Acid+PBS, b) Ascorbic Acid+PBS, c) Dopamine+PBS, and d) Glucose+PBS on OHCO-2 and 258 

OHCO-2+CA-125s that prepared with 1000 ng/mL CA-125 amount for 30 min. 259 

  

  

Figure 8. EIS results of interference measurements that received at room temperature 0.1 260 

potential in a) Uric Acid+PBS, b) Ascorbic Acid+PBS, c) Dopamine+PBS, and d) 261 
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Glucose+PBS on OHCO-2+CA-125s that prepared with 1000 ng/mL CA-125 amount for 30 262 

min. and OHCO-2. 263 

Finally, CV and EIS measurements in isotonic (0.9% isotonic NaCl solution) and artificial 264 

serums were performed at room temperature at 50 mV/s scan rate and 0.1 V to investigate the 265 

effects of different salts in serum samples on the CA-125 electrooxidation reaction over 266 

OHCO-2+CA-125s prepared by incubating 1000 ng/mL CA-125 for 30 min. Comparative CV 267 

and EIS results are given in Fig. 9. Artificial serum was prepared with 5 mM CaCl2, 4.7 mM 268 

D-glucose, 1.6 mM MgCl2, 4.5 mM KCl, and 2.5 mM uric acid. As seen clearly in Fig. 9a, it 269 

is understood that the salts in isotonic and artificial serum do not have any effect on the CA-270 

125 electrooxidation reaction. Likewise, similar load transfer resistances were obtained in the 271 

EIS results and it was compatible with these CV results (Fig. 9b). 272 

  

Figure 9. a) CV results and b) EIS results at 0.1 V that received at room temperature in isotonic 273 

serum and artificial serum on OHCO-2s and OHCO-2+CA-125s prepared with 1000 ng/mL 274 

CA-125 amount for 30 min. 275 

 276 

 277 

 278 
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4. Conclusions  279 

In this study, cacao oil-based or-hydrogels (OHCOs) were prepared with free radical 280 

polymerization reaction to detect CA-125 in serum medium. Firstly, CV measurements were 281 

taken in the presence and absence of CA-125 with different OHCOs synthesized and OHCO-282 

2 that show the best performance with forward peak 1.114 mA/cm2 (1114.0 /cm2) at 0.35 V 283 

and backward peak 1.125 mA/cm2 (1125.0 /cm2) at -0.39 V values were determined. 284 

OHCOs were incubated with 1000 ng/mL CA-125 for 30 min. Secondly, the effect of 285 

parameters such as concentration, incubation time, scan rate over OHCO-2 on the 286 

electrooxidation process between CA-125 and OHCO-2 were investigated. Moreover, EIS 287 

measurements were found that the charge transfer resistance between CA-125 and OHCO-2 288 

reached to the lowest level at 0.1 V (107.5 ohm). The interfering effect of ascorbic acid, 289 

dopamine, glucose, uric acid and different salts in serum medium on the electrooxidation 290 

process between CA-125 and OHCO-2 were investigated in artificial serum measurements. 291 

The findings showed that these interfering molecules have little effect on the electrooxidation 292 

process. As result, this study for the future gives great hope for the detection of CA-125 in 293 

serum medium with cacao oil-based or-hydrogels. 294 
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Highlights 

• cacao oil-based organo-hydrogels are employed as  sensor to detect CA-125 antigen.  

• cacao oil-based organo-hydrogels are promising materials for CA-125 detection. 

• Sensor has fairly wide linear range as 0.00083-41.5 U/mL and 83.0-2075 U/mL 
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